Ethylene is involved in vascular cavity formation in pea (Pisum sativum) primary roots

نویسندگان

  • Daniel K. Gladish
  • Teruo Niki
چکیده

A lengthy cavity usually forms in the vascular cylinders of pea (Pisum sativum) primary roots in response to sudden flooding at 25°C. This is thought to be a form of aerenchyma. Ethylene has been shown to mediate inducible aerenchyma in maize, therefore the role of ethylene in the formation of cavities in pea roots was examined. Pea seedlings grown for 4 d in 2 L beakers in vermiculite moistened below field capacity – conditions that do not favor cavity formation – were flooded with solutions containing ethylene inhibitors (AOA, EGTA, and STS). Pea seeds were germinated and grown in suitable containers (0.8-1.0 L) for 4 d at 25°C in the dark in similar vermiculite. These were then exposed to various concentrations of ethylene for 1 d, or they were flooded and endogenous ethylene was measured periodically by gas chromatography. Observations of roots exposed to exogenous ethylene were made by light microscope. All three inhibitors of ethylene suppressed cavity formation in flooded roots. Exogenous ethylene exposure caused cavities to frequently form in a dose-dependent manner in unflooded roots and caused an increase in mean cortical cell size and number. Flooding increased the rate of ethylene release into the air space above the medium surface. These results indicate ethylene mediates vascular cavity formation and add to the evidence that vascular cavities are the result of programmed cell death and may function as a type of aerenchyma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factors inducing cavity formation in the vascular cylinders of pea roots (Pisum sati6um L., cv. Alaska)

When grown at relatively high temperatures pea primary roots (Pisum sati6um L.cv. Alaska) often form long lysigenous cavities in the centers of their vascular cylinders. Factors other than temperature may be involved, however. Pea seedlings were grown at 10 and 25°C in vermiculite in a water-availability series (750–2200 ml water/2 l vermiculite) and hydroponically at various levels of aeration...

متن کامل

Ethylene Inhibitors Restore Nodulation to sym 5 Mutants of Pisum sativum L. cv Sparkle.

The sym 5 mutants of pea, Pisum sativum L. cv Sparkle, do not differ in growth habit from their normal parent and nodulate poorly at a root temperature of 20 degrees C. If inhibitors of ethylene formation or action (Co(2+), aminoethoxyvinylglycine, or Ag(+)) are added to the substrate, nodulation of the sym 5 mutants is increased. Similar treatments of four other mutant sym lines do not restore...

متن کامل

Rapid effects of indoleacetic Acid and ethylene on the growth of intact pea roots.

Root auxanometers were used to determine the growth rates of individual intact primary roots accurately and quickly. The growth of pea (Pisum sativum L.) roots was inhibited by both indoleacetic acid and ethylene within 20 minutes. A supramaximal concentration of ethylene inhibited root growth less than did 5 to 20 mum indoleacetic acid, indicating that inhibition of root growth by auxin was no...

متن کامل

Receptor-Like Kinase LYK9 in Pisum sativum L. Is the CERK1-Like Receptor that Controls Both Plant Immunity and AM Symbiosis Development

Plants are able to discriminate and respond to structurally related chitooligosaccharide (CO) signals from pathogenic and symbiotic fungi. In model plants Arabidopsis thaliana and Oryza sativa LysM-receptor like kinases (LysM-RLK) AtCERK1 and OsCERK1 (chitin elicitor receptor kinase 1) were shown to be involved in response to CO signals. Based on phylogenetic analysis, the pea Pisum sativum L. ...

متن کامل

Method for overcoming the antiethylene effects of ag.

A technique is described for eliminating the antiethylene effects of the Ag(+) ion in the intact pea plant (Pisum sativum). The technique is based on the ability of the ethylene mimic, acetylene, to negate the antiethylene effect of Ag(+), presumably through salt formation, and subsequently to induce the ethylene response.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008